322 research outputs found

    Varieties of Cost Functions.

    Get PDF
    Regular cost functions were introduced as a quantitative generalisation of regular languages, retaining many of their equivalent characterisations and decidability properties. For instance, stabilisation monoids play the same role for cost functions as monoids do for regular languages. The purpose of this article is to further extend this algebraic approach by generalising two results on regular languages to cost functions: Eilenberg's varieties theorem and profinite equational characterisations of lattices of regular languages. This opens interesting new perspectives, but the specificities of cost functions introduce difficulties that prevent these generalisations to be straightforward. In contrast, although syntactic algebras can be defined for formal power series over a commutative ring, no such notion is known for series over semirings and in particular over the tropical semiring

    Enumeration of quarter-turn symmetric alternating-sign matrices of odd order

    Full text link
    It was shown by Kuperberg that the partition function of the square-ice model related to the quarter-turn symmetric alternating-sign matrices of even order is the product of two similar factors. We propose a square-ice model whose states are in bijection with the quarter-turn symmetric alternating-sign matrices of odd order, and show that the partition function of this model can be also written in a similar way. This allows to prove, in particular, the conjectures by Robbins related to the enumeration of the quarter-turn symmetric alternating-sign matrices.Comment: 11 pages, 13 figures; minor correction

    Topological Qubit Design and Leakage

    Get PDF
    We examine how best to design qubits for use in topological quantum computation. These qubits are topological Hilbert spaces associated with small groups of anyons. Op- erations are performed on these by exchanging the anyons. One might argue that, in order to have as many simple single qubit operations as possible, the number of anyons per group should be maximized. However, we show that there is a maximal number of particles per qubit, namely 4, and more generally a maximal number of particles for qudits of dimension d. We also look at the possibility of having topological qubits for which one can perform two-qubit gates without leakage into non-computational states. It turns out that the requirement that all two-qubit gates are leakage free is very restrictive and this property can only be realized for two-qubit systems related to Ising-like anyon models, which do not allow for universal quantum computation by braiding. Our results follow directly from the representation theory of braid groups which means they are valid for all anyon models. We also make some remarks on generalizations to other exchange groups.Comment: 13 pages, 3 figure

    A combinatorial approach to knot recognition

    Full text link
    This is a report on our ongoing research on a combinatorial approach to knot recognition, using coloring of knots by certain algebraic objects called quandles. The aim of the paper is to summarize the mathematical theory of knot coloring in a compact, accessible manner, and to show how to use it for computational purposes. In particular, we address how to determine colorability of a knot, and propose to use SAT solving to search for colorings. The computational complexity of the problem, both in theory and in our implementation, is discussed. In the last part, we explain how coloring can be utilized in knot recognition

    Spin chains and combinatorics: twisted boundary conditions

    Full text link
    The finite XXZ Heisenberg spin chain with twisted boundary conditions was considered. For the case of even number of sites NN, anisotropy parameter -1/2 and twisting angle 2π/32 \pi /3 the Hamiltonian of the system possesses an eigenvalue 3N/2-3N/2. The explicit form of the corresponding eigenvector was found for N12N \le 12. Conjecturing that this vector is the ground state of the system we made and verified several conjectures related to the norm of the ground state vector, its component with maximal absolute value and some correlation functions, which have combinatorial nature. In particular, the squared norm of the ground state vector is probably coincides with the number of half-turn symmetric alternating sign N×NN \times N matrices.Comment: LaTeX file, 7 page

    Quantum algorithm for the Boolean hidden shift problem

    Get PDF
    The hidden shift problem is a natural place to look for new separations between classical and quantum models of computation. One advantage of this problem is its flexibility, since it can be defined for a whole range of functions and a whole range of underlying groups. In a way, this distinguishes it from the hidden subgroup problem where more stringent requirements about the existence of a periodic subgroup have to be made. And yet, the hidden shift problem proves to be rich enough to capture interesting features of problems of algebraic, geometric, and combinatorial flavor. We present a quantum algorithm to identify the hidden shift for any Boolean function. Using Fourier analysis for Boolean functions we relate the time and query complexity of the algorithm to an intrinsic property of the function, namely its minimum influence. We show that for randomly chosen functions the time complexity of the algorithm is polynomial. Based on this we show an average case exponential separation between classical and quantum time complexity. A perhaps interesting aspect of this work is that, while the extremal case of the Boolean hidden shift problem over so-called bent functions can be reduced to a hidden subgroup problem over an abelian group, the more general case studied here does not seem to allow such a reduction.Comment: 10 pages, 1 figur

    Weak Fourier-Schur sampling, the hidden subgroup problem, and the quantum collision problem

    Get PDF
    Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem.Comment: 21 page

    Ferromagnetic Ordering of Energy Levels for Uq(sl2)U_q(\mathfrak{sl}_2) Symmetric Spin Chains

    Full text link
    We consider the class of quantum spin chains with arbitrary Uq(sl2)U_q(\mathfrak{sl}_2)-invariant nearest neighbor interactions, sometimes called SUq(2)\textrm{SU}_q(2) for the quantum deformation of SU(2)\textrm{SU}(2), for q>0q>0. We derive sufficient conditions for the Hamiltonian to satisfy the property we call {\em Ferromagnetic Ordering of Energy Levels}. This is the property that the ground state energy restricted to a fixed total spin subspace is a decreasing function of the total spin. Using the Perron-Frobenius theorem, we show sufficient conditions are positivity of all interactions in the dual canonical basis of Lusztig. We characterize the cone of positive interactions, showing that it is a simplicial cone consisting of all non-positive linear combinations of "cascade operators," a special new basis of Uq(sl2)U_q(\mathfrak{sl}_2) intertwiners we define. We also state applications to interacting particle processes.Comment: 23 page

    Spectral Measures and Generating Series for Nimrep Graphs in Subfactor Theory II: SU(3)

    Get PDF
    We complete the computation of spectral measures for SU(3) nimrep graphs arising in subfactor theory, namely the SU(3) ADE graphs associated with SU(3) modular invariants and the McKay graphs of finite subgroups of SU(3). For the SU(2) graphs the spectral measures distill onto very special subsets of the semicircle/circle, whilst for the SU(3) graphs the spectral measures distill onto very special subsets of the discoid/torus. The theory of nimreps allows us to compute these measures precisely. We have previously determined spectral measures for some nimrep graphs arising in subfactor theory, particularly those associated with all SU(2) modular invariants, all subgroups of SU(2), the torus, SU(3), and some SU(3) graphs.Comment: 38 pages, 21 figure

    Exact expressions for correlations in the ground state of the dense O(1) loop model

    Full text link
    Conjectures for analytical expressions for correlations in the dense O(1)(1) loop model on semi infinite square lattices are given. We have obtained these results for four types of boundary conditions. Periodic and reflecting boundary conditions have been considered before. We give many new conjectures for these two cases and review some of the existing results. We also consider boundaries on which loops can end. We call such boundaries ''open''. We have obtained expressions for correlations when both boundaries are open, and one is open and the other one is reflecting. Also, we formulate a conjecture relating the ground state of the model with open boundaries to Fully Packed Loop models on a finite square grid. We also review earlier obtained results about this relation for the three other types of boundary conditions. Finally, we construct a mapping between the ground state of the dense O(1)(1) loop model and the XXZ spin chain for the different types of boundary conditions.Comment: 25 pages, version accepted by JSTA
    corecore